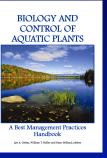
PHC 6937: Water Biology

Aquatic Insects

Taxonomy, Ecology & BioControl Case Study

Spring Semester 2011


Instructor

- Contact Information:
 - Dr. Jim Cuda, Associate Professor
 Phone 352-273-3921
 Email: jcuda@ufl.edu
- Research Area:
 - Biological Control of Aquatic and Terrestrial Weeds

UF FLORIDA

2009 Publication

- Three Chapters: – Aquatic Plants, Mosquitoes & Public Health Chapter 5
 - Introduction to **BioControl of Aquatic Weeds** Chapter 8 Insects for **BioControl of**
 - **Aquatic Weeds** Chapter 9

References

- Merritt, R. W., K. W. Cummins, and M.B. Berg (eds.). 2008. An Introduction to the Aquatic Insects of North America, 4thrd edition. Kendall / Hunt, Dubuque, IA
- Center, T. D., F. A. Dray, Jr., G. P. Jubinsky, and M. J. Grodowitz. 1999. Insects and Other Arthropods That Feed on Aquatic and Wetland Plants. USDA, Agricultural Research Service, Technical Bulletin No. 1870.

UF FLORIDA

Topics

- Introduction
- Overview of Aquatic Insect Taxa
- Habitat Classification and Terminology
- Example of Trophic Organization and Function
 - Hydrilla Midge Case Study
- Questions?

Learning Objectives

- Reasons for Studying Aquatic Insects
- Aquatic Existence Problems and Solutions
- Respiration Adaptations
- Scientific & Common Names of Aquatic Insect Orders
- Terminology for Major Aquatic Habitats
- Different Modes for Aquatic Existence
- Types of Functional Feeding Groups

UF FLORIDA

Topics

- Introduction
- Overview of Aquatic Insect Taxa
- Habitat Classification and Terminology • Example of Trophic Organization and
- - Function Hydrilla Midge Case Study
- Questions?

UF FLORIDA

Hell on Earth

- Rainy Season Triggers Midge Swarms on Lake Victoria, Africa
- Locals Catch & Eat Insects
- 'Patty' Composed of 0.5 Million Contain 7X More **Protein Than Beef**

Why Study Aquatic Insect Communities?

Basic Research on Population Dynamics

 Predator-Prey Interactions
 Trophic Relationships

- Competition Studies
- Applied Research (Pest Management) Control of Human and Animal Pests (e.g., mosquitoes, midges, black flies, horse flies) Pollution Studies (e.g., mayfly naiads, midge & moth fly larvae) Biological Control of Aquatic Weeds (e.g., alligatorweed, water hyacinth, hydrilla, and hygrophila)

UF FLORIDA

Life History Adaptations for Aquatic Existence

- Osmoregulation -Wax layer -Excretion
- Gas exchange
 - -Atmosphere

 - —Plant breathers
 —Temporary & Permanent Air Stores
 —Tracheal Gills

 - Oxygen transport (adults)Hemoglobin
- Temperature
 - -Thermal death 30 to 40° C

UF FLORIDA

Topics

- Introduction
- Overview of Aquatic Insect Taxa
- Habitat Classification and Terminology
- Example of Trophic Organization and Function
 - Hydrilla Midge Case Study
- Questions?

- Phylum Arthropoda
 - Class Insecta (Insects)
 - Subclass Apterygota (w/o Wings)
 Order Collembola (Springtails)
 Subclass Pterygota (w/ Wings)

 - Infraclass Paleoptera (Wings cannot twist)
 Order Ephemeroptera * (Mayflies)
 Order Odonata * (Dragonflies & Damselflies)
 Infraclass Neoptera (Wings can twist at base)
 - - Division Exopterygota (Wings develop ext.) Order Pleocoptera *(Stoneflies)
 - Order Hemiptera (True Bugs & Hoppers)

* Entirely aquatic

(cont'd)

- Subclass Pterygota
 - Infraclass Neoptera
 - Division Endopterygota (Wings develop int.) Order Neuroptera (Dobsonflies, etc.)

Classification Scheme

- Order Trichoptera * (Caddisflies)
 Order Lepidoptera (Moths)
 Order Coleoptera (Beetles)

- Order Hymenoptera (Wasps)
 Order Diptera (Moth flies, Mosquitoes, Midges)
- * Entirely aquatic

UF FLORIDA

UF FLORIDA

Order Collembola- Springtails

- Small Size
- Antennae Short
- Simple Eyes
- Presence of Forked Abdominal Appendage
- Chewing/Stylet Mouthparts
- Detritivores
- Simple Metamorphosis
- Immatures and Adults Live in Photo Credit: S. Hopkin Same Habitat
- Primitively Wingless

Order Ephemeroptera- Mayflies

- Small to Medium Size
- Antennae Bristle-like
- 2 to 3 Thread-like Tails
- Nymphs (Naiads) w/ Lateral Abdominal Gills
- Wings Triangular & Held Upright at Rest
- Chewing Mouthparts
- Detritivores
- Deunivores
- Simple Metamorphosis
 Molt as Winged Adults

UF FLORIDA

Order Odonata- Dragon- & Damselflies

- Medium to Large Size
- Large Compound Eyes
- Antennae Bristle-like
- Chewing Mouthparts
- Nymphs (Naiads) w/ Terminal Abdominal or Rectal Gills
- Wings Elongate & Held Dorsally or Laterally at Rest
- Predaceous
- Simple Metamorphosis
 UF FLORIDA

Photo Credit: P. Myers

Order Plecoptera- Stoneflies

- Small to Medium Size
- Antennae Long, Slender
- Chewing Mouthparts
- Membranous Wings
- Folded Flat Over Body
- Body Soft, Flattened
- Cerci Present
- Branched Gills on Thorax
- Omnivores
- Simple Metamorphosis

Photo Credit: S. Houston & T. Murray

Order Hemiptera- True Bugs

- Small to Large Size
- Antennae Bristle-like
- Piercing Mouthparts
- Wings Membranous at Apex
- Body Slender to Oval
- Raptorial Front Legs
- Predaceous
- Breathing Tube or Air Bubble
- Simple Metamorphosis
 UF FLORIDA

Photo Credit: www.cals.ncsu.edu

Giant Water Bug Outbreak

St. Petersburg Times ONLINE TAMPA BAY The invasion of the giant water bug

Customers stomp and cringe as swarms cover a Pasco shopping

plaza. They're huge, creepy - and crunchy in sauce.

By ALEX LEARY, Times Staff Writer © St. Petersburg Times published June 21, 2003

UF FLORIDA

Electric Light Bug, Lethocerus sp.

Order Neuroptera- Dobsonflies, etc.

- Small to Large Size
- Antennae Long, Slender
- Chewing Mouthparts
- Wings Membranous w/ Numerous Cross Veins

 Held Roof-like Over Body
- Lateral Abdominal GillsPredaceous
- Complete Metamorphosis

UF FLORIDA

Photo Credit: www.cals.ncsu.edu

Order Trichoptera- Caddisflies

- Small to Medium Size
- Antennae Long, Slender
- Chewing Mouthparts
- Wings Hairy, w/ Scales - Held Roof-like Over Body
- Larvae Caterpillar- like - Construct Cases
- Omnivorous
- Complete Metamorphosis

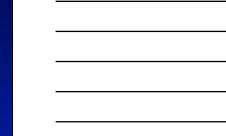
UF FLORIDA

Photo Credits: J. Hodges & T. Murray

Order Lepidoptera- Moths

- Small to Medium Size
- Antennae Variable
- Sucking (A) /Chewing Mouthparts (L)
- Scales on Wings
- Respiration Variable Cutaneous, Air Bubble, Tracheal Gills
- Phytophagous
- Complete Metamorphosis

UF FLORIDA


Order Coleoptera- Beetles

- Small to Large Size
- Antennae Variable
- **Chewing Mouthparts**
- Hardened Wings (Elytra)
- **Respiration Variable**
- Plastron, Air Bubble, Abdominal Gills
- Predaceous
- Complete Metamorphosis

UF FLORIDA

Photo Credit: S. Boucher

8

Order Hymenoptera- Wasps

- Small in Size
- Antennae Long
- Chewing Mouthparts
- Membranous Wings
- Respiration Variable – Air Bubble, Cutaneous
- Parasitic
- Complete Metamorphosis

UF FLORIDA

Order Diptera- Flies

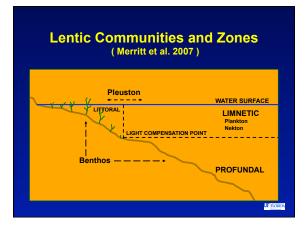
- Small to Medium Size
- Antennae Variable
 Sucking / Chowing
- Sucking / Chewing Mouthparts
- 1 Pair Membranous Wings
- Respiration Variable
 Outaneous, Air Tubes
- Omnivorous
- Complete Metamorphosis

UF FLORIDA

Photo Credit: A. Wild & J. Neuswanger

Topics

- Introduction
- Overview of Aquatic Insect Taxa
- Habitat Classification and Terminology
- Example of Trophic Organization and Function
 - Hydrilla Midge Case Study
- Questions?


UF FLORIDA

Aquatic Habitat Classification System

<u>Category</u>	Description
Rivers	
 Lotic-erosional 	 running-water riffles
Lotic-depositional	 running-water pools
Lakes	
Lentic-limnetic	- open water (shallow)
Lentic-littoral	 shallow shore area
Lentic-profundal	 open water (deep)
Benthos	- sediments
Merritt et al. (2007)	

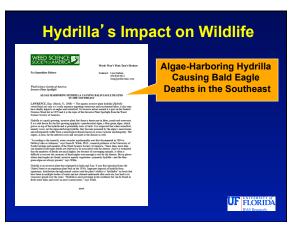
Lentic (Lake) Communities & Zones

- Surface Film
- Pleuston- Surface Dwelling Organisms Limnetic Zone- Open Water to Light
 - Penetration Limit
- Nekton- Free Swimming Organisms
 Plankton- Free Floating Organisms
 Littoral Zone- Shallow Region Where **Plants Grow**
- Diverse Assemblage of Insects Profundal Zone- Low Light, No Plant
- $\begin{array}{l} \text{Growth} \rightarrow \text{Low O}_2 \text{Levels} \\ \bullet \text{ Benthos- Sediment} \end{array}$

Modes of Ex <u>Category</u>	istence in Aquatic Habitats Examples	
Pleuston	– Hemiptera: Gerridae	
	- Diptera: Culicidae	
Limnetic / Littoral		
- Divers	 Coleoptera: Dytiscidae 	
– Swimmers	– Ephemeroptera: Siphlonuridae	
- Clingers	- Trichoptera: Hydropsychidae	
– Sprawlers	 Odonata: Libellulidae 	
– Climbers	– Odonata: Aeshnidae	
Benthos		
- Burrowers	- Diptera: Chironomidae Merritt et al. (2007)	

Functional Feeding Groups		
<u>Category</u>	Food Type	
Shredders	 Living plant tissue 	
Collectors	– Decomposing FPOM	
 Scrapers 	– Periphyton and CPOM	
Piercers	 Algae and plant cell fluids 	
 Predators 	 Animal tissue (multiple prey) 	
Parasitoids	 Animal tissue (single prey) 	
Merritt et al. (2007)	UF FLORIDA TAX Reserve	

Topics


- Introduction
- Overview of Aquatic Insect Taxa
- Habitat Classification and Terminology
- Example of Trophic Organization and Function-
 - Hydrilla Midge Case Study
- Questions?

UF

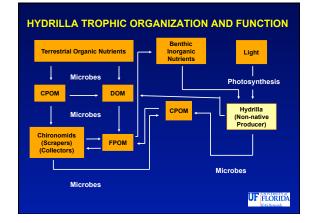
Hydrilla verticillata (L.f.) Royle

- Rooted submersed aquatic plant
- Tropical and subtropical distribution – Native range- Africa, Asia, Australia
- Monotypic stands
 - Displace native spp.
 - Reduce biodiversity
- Dense surface mats
 - Impede navigation
 - Interfere with flood control

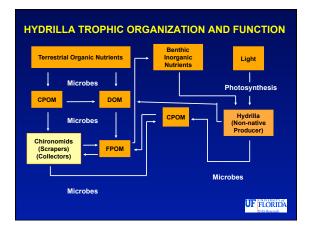
Why is Hydrilla Invasive?

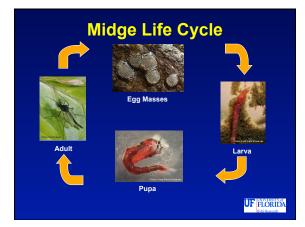
Enemy Escape Hypothesis

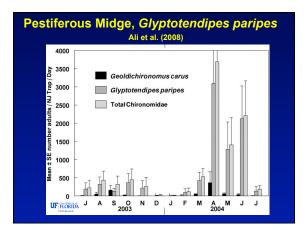
- Native Specialist Enemies Control Abundance and Distribution of Native Plants
- Escape from Specialist Enemies is Key Contributor to Exotic Plant Success
- Enemy Escape Benefits Exotics Because They Gain a Competitive Advantage Over Native Plants as a Result of Being Liberated from Their Pests


Williams, J. R. 1954. The biological control of weeds. - In: Report of the Sixth Commonwealth Entomological Congress, London, UK, pp. 95-98.

UF FLORIDA

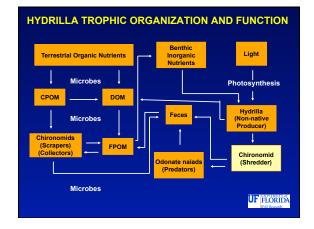

Wakulla Springs, April 2002

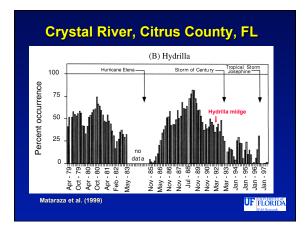


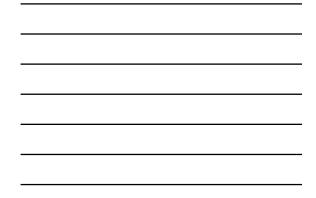


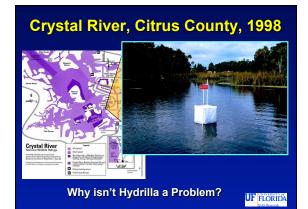
Chironomidae - Midges

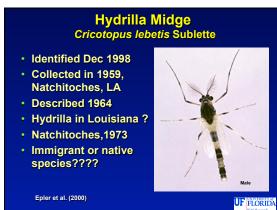
- Non-Biting Primitive Flies
- Inhabit Variety of Aquatic Habitats
- Larvae are Beneficial
 - Food for Fish, Birds, and Invertebrates
 - Recycle Organic Nutrients
 - Indicators of Pollution
- Adults Considered Pests
 - Swarms Cause Asphyxia in Cattle, Driving Accidents, Contaminate Food, Transport Bacteria, Allergic Reactions

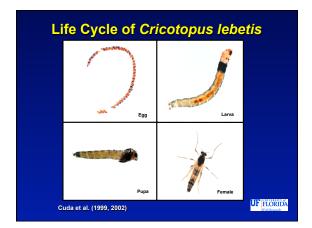


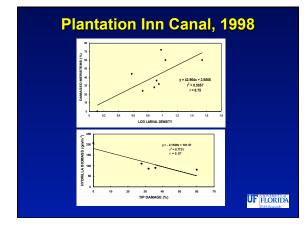


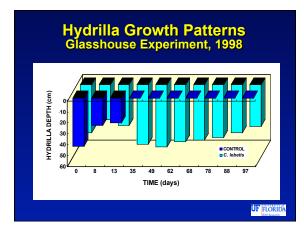












<section-header>

Topics

- Introduction

- Introduction
 Overview of Aquatic Insect Taxa
 Habitat Classification and Terminology
 Example of Trophic Organization and Function

 Hydrilla Midge Case Study

 Questions?